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Topological properties of clusters are used to extract critical parameters. This 
method is tested for the bulk properties of d= 2 percolation and the d= 2, 3 
Ising model. For the latter we obtain an accurate value of the critical tem- 
perature J/kBT c = 0.221617(18). In the case of the d= 3 Ising model with film 
geometry the critical value of the surface coupling at the special transitions 
is determined a s  J l c / J  = 1.5004(20) together with the critical exponents 
fl~ = 0.237(5) and ~b = 0.461(15). 

KEY WORDS: d=3 Ising model; cluster algorithm; critical temperature; 
finite-size scaling; surface-related critical exponents. 

1. I N T R O D U C T I O N  

The cri t ical  behav io r  of magne t ic  mater ia l s  with var iable  s t renght  of  
coupl ing  on the surface is charac te r ized  by surface cri t ical  exponents  
independen t  of the bulk  exponents .  F o r  their  theoret ica l  de t e rmina t ion  
e-expansion,  (1) series expansion,  (2) and  M o n t e  Car lo  me thods  (3'4) were 
appl ied.  The  la t te r  are  made  convenien t ly  using a d - - 3  Ising mode l  
e m b e d d e d  in a film geometry.  In  ref. 3 it is shown tha t  using the M o n t e  
Car lo  m e t h o d  cri t ical  pa rame te r s  can be de te rmined  with c o m p a r a b l e  or  
higher  accuracy  as c o m p a r e d  with o ther  methods .  In  this p a p e r  we repor t  
on M o n t e  Car lo  s imula t ions  of the same mode l  using an improved  me thod :  
the cluster  a lgor i thm.  This will lead to a cons iderab le  gain in accuracy.  

W e  cons ider  Ising spins ~ defined on the sites x of a d -d imens iona l  
cubic la t t ice with per iod ic  b o u n d a r y  condi t ions  in d -  1 direct ions and two 
free surfaces in the remain ing  d i rec t ion  (so-cal led film geometry) .  If we take 
the nea res t -ne ighbor  coupl ing  J1 in the surface layers  different f rom the 
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bulk coupling J, we get the following expression for the energy of a spin 
configuration: 

E =  - j + -  xOx (1.1) 
(x,~)r (x,/~)e A 

The second sum runs over all surface links (x, #) which are excluded in the 
first. A schematic phase diagram (5~ in the J1/J, T plane is depicted inFig. 1. 
For temperatures approaching the bulk critical value Tc from above the 
bulk can order either with a paramagnetic surface (ordinary transition at 
small J1/J) or in the presence of an already ordered surface (extraordinary 
transition at large J1/J). Both regions are separated by a multicritical 
region (special transition at Jic/J). In each region the surface magne- 
tization is characterized by its own critical exponent /31. Near the special 
transition there is an additional anomalous dimension - ( # v  for the surface 
coupling (J1 - Jlc)/J. The aim of this paper is to determine Jlc/J as well as 
the critical indices at the ordinary and special transitions. 

In ref. 3 a local Monte Carlo method was employed. For several 
reasons a cluster algorithm (6'7) may improve the accuracy. Besides the 
considerable reduction of critical slowing down of a cluster algorithm as 
compared to a local algorithm, improved extimators, for example, for the 
susceptibility can be used. Moreover, the distribution of large (percolating) 
clusters exhibits the behavior expected from finite-size scaling (FSS). It has 
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Fig. 1. The phase diagram for the d = 3  Ising model with film geometry in the Jl/J, knT/J 

plane. 
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been demonstrated that bulk critical indices can be extracted from the 
distributions both for the Swendsen-Wang algorithm (8~ and the single- 
cluster method. (9~ Hitherto, the separation of these large clusters remained 
unsatisfactory. The criterion of the largest cluster in a Swendsen-Wang 
decomposition of the lattice used in ref. 8 cannot be applied to the com- 
putationally simpler single-cluster method. The separation in ref. 9 relies on 
a parametrization of the cluster size distribution. Criteria based on perco- 
lation usually require free surfaces, which leads to a slow approach to the 
inifinite system. In this paper we use a topological property of the large 
clusters. Within periodic boundary conditions a loop number l is assigned 
to a cluster if it contains a set of sites allowing paths going around the 
torus in I independent directions. Only the large clusters can contribute to 
l r  The percolating cluster,  which appears at the transition into the 
ordered phase, has l =  d on a large but finite lattice. Our main observation 
is that the anomalous dimensions in FSS of cluster observables are inde- 
pendent of the loop number l ~ 0. A similar observation has been made for 
clusters defined as regions of equal spins in ref. 10. Therefore ratios of 
observables with different 1 can depend in the scaling region only on dimen- 
sionless variables such as the ratio of lattice size L to correlation length ~. 
At T = Tc the ratio L/~ vanishes independent of L, leading to a determina- 
tion of an unknown Te. Such dimensionless ratios can be formed by a 
suitable combination of n-point functions also for spin variables (e.g., the 
fourth-order cumulant of the order parameter as advocated in ref. 11). 
However, n-point functions including the disconnected parts are almost 
constant, whereas .connected ones are difficult to determine. We shall 
demonstrate that moments of the cluster size distribution exhibit enough 
variation to allow an accurate determination of To. 

Before we apply our method to the surface problem mentioned above 
we will test it in cases where either exact or sufficiently accurate results 
are available. For  this purpose we select d = 2  bond percolation (~2~ and 
the Ising model in d = 2 ,  3 (~3~ dimensions, all with periodic boundary 
conditions (hereafter abbreviated by p.b.c.). 

The paper is organized as follows. In Section 2 the cluster algorithms 
are summarized and the necessary modifications in the case of a surface 
problem are given. Section 3 contains the description of the method to 
extract critical parameters and the results for the known models. In 
Section 4 we report on the new results for the critical parameters at the 
ordinary and special transitions for the d = 3  Ising model with film 
geometry. We also discuss possible violations of FSS. Some of the results 
independent of scaling violations are published in a letter. (~4~ Section 5 
contains our concluding remarks. 
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2, CLUSTER A L G O R I T H M  

We use a d-dimensional sc lattice with either periodic boundary condi- 
tions or film geometry. In the first case we have V =  L d sites and in the 
second case A surface points are contained in the total number of sites 
V= �89 First we discuss the cluster algorithm with no surfaces. The 
generalization to film geometry will be given later. 

The models considered here are special cases of a Q-state Potts model 
(see, e.g., ref. 15). Each spin a x can take Q different values. The bulk part 
of the energy is given by 

E= - J Q  ~ 6 ..... +~ (2.1) 
X,/A 

Q = 2 amounts to the Ising case and extrapolation to Q---1 describes the 
bond percolation. (12) One is interested in averages of an observable O in 
thermal equilibrium 

, 
( O ) = ~  2 0 ( a ) e x p  1 E 

where Z is given by ( 1 )  = 1. In order to simulate the sum (2.2) with the 
algorithm of Swendsen and Wang (a) (hereafter abbreviated by SW), a 
sequence of configurations is generated in two steps. First all the links 
(x, ~) of the lattice are activated according to the following probability 
p(x, ~): 

0 ax:~ ~x+~ (2.3) 
p(x, # ) =  1 - e x p ( - Q J / k B T )  a x = a x + ~  

Sets of sites with equal spin a connected by activated links are called 
clusters. 

In the second step the spin value of each cluster is chosen out of the 
Q possible values at random. Since the cluster spins are independent, an 
improved estimator for the susceptibility g at T >  Tc can be derived ~16) (see 
also the Appendix): 

In (2.4) ~2c stands for a sum over clusters of one decomposition of 
the lattice and {. } denotes an average over different decompositions. 
The observable (2.4) can be generalized to the moments of the cluster 
distribution 
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In the Q = 1 case thermal averages (2.2) become trivial, p(x, #) is independ- 
ent of the link, but still T dependent, and the moments (2.5) describe the 
usual bond percolation. In each configuration we have the identity 

Sc = V (2.6) 
c 

Therefore the moments M n are normalized to M 1 = 1. In the ordered phase 
for T <  Tc there exists at most one percolating cluster if the dimension is 
less than 6.  (17) This is strictly true only in d = 2 .  For d >  2 it is generally 
believed that this holds to a very good approximation. ~18) If we define the 
property Ope~ for this cluster on a finite lattice, the probability mp of a site 
belonging to this cluster defines an order parameter for L--+ oe 

s o 

For the following we do not need the equality of (2.7) with the usual 
magnetization, we only require mp having the same anomalous dimension. 

In each Monte Carlo step a decomposition of the lattice into clusters 
is needed for the averages {. }. Even though there exists an efficient algo- 
rithm for this purpose, (19) this can be avoided by the single-cluster method 
proposed for percolation by Leath (2~ and for correlated percolation by 
Wolff. (7) The sum over all clusters in the single-cluster observable (2.5) is 
evaluated by generating only one cluster in each step using probabilities 
(2.3) starting at x 0. Choosing this site and its cluster with probability 
q(xo, c), one can replace the average (2.5) by 

S n 

The efficiency can be further increased (7, 21) if in each spin update the cluster 
spins are given a random value different from the old one. The choice of 
q(xo, c) is restricted by the normalization condition Zc q(xo, c ) =  1 for 
each SW decomposition. Wolff used the identity (2.6) for the choice 

S C 
q(xo, c) = -~ (2.9) 

which means the starting site x o is chosen at random in the lattice. With 
(2.9) and (2.8) we get for the moments 

) 
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Here ( . )  denotes an average over the single cluster steps [as ( - ) q  in 
(2.8)]. The single-cluster method is easier to implement and can lead to 
higher efficiency. (7'22) Both cluster methods can also be applied to other 
spin models than the Q-state Potts model, u6'21) In this case relation (2.4) 
between the moment M2 and the usual susceptibility does no longer 
hold.(23) 

In relation (2.7) for the order parameter we need an estimator for the 
infinite cluster on a finite lattice. With periodic boundary condition we can 
assign a loop number l (0 ~< l ~< d) to each cluster, which means that inside 
the cluster at least l paths exist going around the torus in ! independent 
directions. The property for these clusters is denoted by Or. Examples are 
given in Fig. 2 for a 3 x 3 lattice in d = 2. 

Only clusters with l o o p  number d can contribute to the order 
parameter (2.7), since in the limit ~/L ~ 0 for T <  Tc there exist only finite 
clusters and the percolating cluster. Therefore we estimate me by 

s o mp={--~ d}m({~d) (2.11) 

With the help of 8 t  we can also measure the size distribution of clusters 
with loop number I, which is expressed by the moments 

Mn(O,)={~(~)~Oz}=l(V)n-~O,I (2.12) 

The advantage of moments (2.12) with l r  over the moments in (2.5) is 
their higher sensitivity to large clusters. Therefore they approach the 
scaling limit faster. Since Y~t Ot = 1, the moments (2.5) can be expressed by 
(2.12). 

t - - O  ---I - -2  

Fig,  2. Examples of s = 5 clusters in a 3 x 3 p.b.c,  lattice with different loop numbers. The 
sites of the clusters are denoted by O and links belonging to the cluster by double lines. 
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We now turn to the modifications and generalizations implied by the 
presence of a surface. The SW algorithm has to be modified in such a way 
that on the r.h.s, of (2.3) the interaction strength J is replaced by J1 for 
links in the surface, The loop number l in Or can vary over l =  0 ..... d -  1. 
In addition there is the property Otp for clusters having sites in both 
surfaces. Since each cluster may contain t c surface sites, we can define the 
moments 

(2.13) 

where 0 may be any property chosen from 1, 0 r, Otp. Within the single- 
cluster method the moments (2.13) are given by 

(2.14) 

Due to the identity 

~ tc= A (2.15) 
c 

the moments Mnm are normalized to M l o ( 1 ) = M l l ( 1 ) =  1. Equation (2.15) 
allows also a modification of the Wolff method, Choosing the probability 
q(xo, c)= tc/A implies that the single-cluster algorithm starts anywhere in 
the surface. Denoting these averages by ~-)A,  we can express the moments 
mnm(O ) also by the surface cluster method or 

(2.16) 

Due to (2.16) we do not get new information by this method. However, the 
statistics on surface quantities can be improved. Using only clusters start- 
ing in the surface will lead to a poor description of thermal equilibrium in 
the bulk. Thus we will use both kinds of starting points in equal amount. 
As in the bulk case, the surface susceptibilities in the disorded phase can be 
expressed in terms of the moments mnm(l): 

Z1 = ~  ~, (~rx~y) = ~  tosc = VM21(1) (2.17) 
x E  V , y ~ A  

The details are given in the Appendix. 
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3. D E T E R M I N A T I O N  OF C R I T I C A L  P A R A M E T E R S  

In previous investigations (8'9) it has been shown that the large clusters 
exhibit a behavior expected from FSS. Let us first discuss the implications 
of FSS for the bulk moments  (2.12). If s/V also becomes a scaling variable 
with anomalous dimension y~, we expect the following behavior of the 
moments  near the critical point T,.: 

M,(T, L, Oz) = LYsw+"Y'M~(O,, z) (3.1) 

where Ysw describes the dimension of the SW distribution and z is a 
scale-invariant variable, for which we take 

z - -  - 1 (3.2) 

We prefer (3.2) to the usual Fisher variable ( - Izl v), because it keeps track 
of the sign of T -  To. Furthermore,  it will turn out that the functions M 
and their ratios can be parametrized in most cases by either linear or 
exponential functions in z, which would become complicated using [zl ~. As 
in ref. 9, Ys and Y,w can be expressed in terms of the known dimensions of 
M2 ( = z / V )  and the order parameter  (2.11), which gives 

Ysw = 0 

y s  = - ~ / v  

The scaling law (3.1) applies only to moments sensitive to large clusters, 
which means Mn(Oo) has to be excluded for n < 2. If we take ratios of 
M~(Ot) with different l 

M,(0I) 
rn(Ot, 0l,. z) (3.3) 

M,(Or) 

we have observables which can depend on z only. Equation (3.3) provides 
an easy way to locate an unknown Tc. If r ,  is plotted as a function of T 
for different L, r ,  becomes independent of L at T =  Tc (or z = 0). With T c 
known, a value for v follows from the requirement that for different L the 
ratio r ,  should lie on the same universal curve as a function of z. Finally, 
~/v can be determined from the variation of M ,  at z = 0: 

M,(O~, L)T= Tc = L-"~/~M,(O,, 0) (3.4) 

The method works only if the moments  vary in the critical region at all. 
This is expected, since in the limit z ~ oe we get no clusters with loop 
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number  l ~ 0 ,  whereas  in the limit z--* - o c  a finite fract ion of clusters 
with l =  d mus t  be present. Therefore  at  least r,(Oo, Oa, z) has to show a 
substant ial  var ia t ion crossing the critical point  at z = 0. 

The  first model  we want  to test is d = 2  bond  percolation.  We 
generated 20000 clusters per point  in the range of 0.495 ~< p ~< 0.505 with 
p =  1 - - e x p ( - J / k B T ) .  In Fig. 3 the rat io 

M l ( 0 2 )  
r(p, L) (3.5) 

M I ( O 1 )  

is shown as a function of p for different lattice sizes L, which obviously 
have a c o m m o n  point  of  intersection. F r o m  a linear fit to In r we obtain  the 
critical value of p: 

Pc = 0.49996(11 ) (3.6) 

close to the theoretical  value 1/2. (12) With  p,. = 1/2 the same data  are shown 
in Fig. 4 as a function of z =- ( P c - P ) L  I/v, where 1Iv is fitted together  with 
a straight line to In r(z), to obta in  the best scaling behavior :  

v = 1.37(5) (3.7) 

4.00 

L = 10 , J 

I N  ~ A L = 20. 7 3,25 V L = 40 

2.50 [ ] ~  
1.75 

? 
1.00 , ~ ~ I ~ ~ 

0.4.94. 0.4-97 0.500 0.503 0.506 P 
Fig. 3. Plot of In r, with r defined as the moment  ratio (3.5) for d =  2 bond percolation, as 
a function of p for different lattice sizes. The lines represent linear fits to the data. The 
common point of intersection gives p,.. 
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Fig. 4. The same data  as in Fig. 3 shown as a function of z. If  FSS holds, the data collapse 
into a single line. The straight line corresponds  to a fit including v as a free parameter.  

- 0 . 2  

LA M~(8 d) 

-0.6 
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Fig. 5. Plot of In Mn(O2) at p = Pc = 1/2 for d =  2 bond percolation as a function of In L with 
n = 1, 2. F r o m  the slopes the value (3.8) for fl/v is determined by a straight-line fit (solid lines). 
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The validity of FSS is obvious. Figure 5 shows the L dependence of 
Mn(O2) at P=Pc with n = 1 , 2  on a double log scale. The power law 
implied by (3.4) is well satisfied. From the slopes n~/v in a double log plot 
we obtain 

~/v = 0.104(2) (3.8) 

The values (3.7) and (3.8) are in agreement with the theoretical values, 
which are given in Table I. Other moments or ratios exhibit the expected 
behavior with less statistical significance. 

Now we apply the same method to the Ising model dimensions 
with p.b.c, in d = 2 ,  3. To determine (kBT/J)c we typically generated 
20000-100000 clusters at each value of T and L. 

Figure 6 shows the most significant ratio r=M2(Od)/M2(Oo) as a 
function of J/(ksT) for various L. Again a common point of intersection 
is evident. Fitting In r by straight lines, we obtain 

d = 2 :  ( + ) = 0 . 4 4 0 6 8 6 ( 1 0 ) c  (3.9) 

( t ~ )  =0.221617(18) (3.10) d =  3: 
\ r . .B  a / c 

The errors in (3.9), (3.10) include the measured autocorrelation time. The 
achieved accuracy is surprisingly high, considering the moderate computing 
effort. Our result for d =  3 agrees with the series expansion by Liu and 
Fisher (24) and within 2 standard deviations with the result from the Monte 
Carlo renormalizations group (2s'26) and the histogram method of ref. 27. 
The same data are shown in Fig. 7 as a function of z, including v as a 

Table I. Comparison of Critical Parameters Obtained by the Cluster Method 
(Values without Reference) with Values Given in the Literature 

J / (kB T~) or Pc v ~/v 

Bond percolation, 0.49996(! 1 ) 1.372(49) 0.104(2) 
d =  2 I/2 (18) 4/3 (a8) 5/48 (18) 

Ising model, 0.440686(10) 1.001(3) 0.126(3) 
d = 2 0.4406867. - .  (13) 1 (13) 1/8(13) 

Ising model, 0.221617(18) 0.636(5) 0.516(7) 
d =  3 0.221630(10) (z4) 0.633 (z4) 0.522 (241 

0221654(6) (25) 0.516(6) (9) 
0.221658(3) (27) 

822/73/1.2-20 
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L = 20 

0.2205 0.2225 

1.0 

-2.5 

-1 .00  -6 .0  

0.21 95 0 .2215 0 .2235 

J /kBT 

Fig. 6. Plot of In r with r=M2(Od)/M2(Oo) as a function of J/(kBT) for various L for the 
Ising model with d =  2 (upper part) and d =  3 (lower part). The lines are fits to the data with 
a common point of intersection giving the values (3.10) for J/k~Tc. 

-I .6 -0.8 0.0 0.8 1.6 

9 ~ ~ ~ ~ ~ ~ ~ 6 

d=2 

3 o 

0 , -3 
-2 -1 0 1 

Z 

Fig. 7. Same data for In r as in Fig. 6 as a function of z = (T/T~ - 1 )Llh for d = 2 and d = 3 
Ising model. Within FSS the data should lie on the scaling curve. From the slopes of a 
straight-line fit a value of 1Iv is obtained, giving the values of (3.11). 
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parameter in the straight-line fit. The ratios nicely follow the universal 
curve predicted by FSS with the v values 

d = 2  v=  1.001(3) 
(3.11) 

d =  3 v = 0.636(5) 

As in the percolation case, ~/v can be obtained from the L dependence of 
M,,(Oa) at T =  To, taken from ref. 27 in the case d =  3. Figure 8 shows M, .  
The fitted slopes for n = 1, 2 lead to 

d = 2  fl/v = 0.126(3) 
(3.12) 

d= 3 fl/v = 0.516(7) 

As in the previous case, the used moments are those with the highest 
statistical accuracy. The critical exponents derived by other moments are 
compatible within the errors. Table I summarizes the comparison with 
other methods, which shows that using clusters with loop number different 
from zero leads to a reasonable accuracy for critical exponents in the tested 
models. In our previous investigation (9) the large clusters were separated by 
a parametrization of the cluster size distribution. To demonstrate the 

Fig. 8. 

2.0 

In Mn(Gd) 
0.8 

-0.8 

-2.4. 

-L.O 
2.3 

2.8 3.6 4.4 
I I I I I I I 

d = 2  

~ n = 2  

" - q l  

d--3 

i I I I I I f 

2.7 3.1 3.5 

In L 

-0.6 

-2.2 

-3.0 

The moments  In Mn(Od) at T =  Tc for the d = 2 ,  3 Ising model with n =  1, 2 as a 
function of In L. The slopes of the straight-line fits give nfl/v. 
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validity of this approach ,  Fig. 9 shows this distr ibution of cluster sizes 
x = s / V  at T =  Tc and L = 20 for the d = 3 Ising model  together  with the fit 
of ref. 9. At low s the Oo-clusters dominate .  The  decrease with a power  law 
is de te rmina ted  by the animal  exponent  of percolat ion.  Ils) The peak  at high 
s we previously assigned to the percolat ing cluster is complete ly  given by 
O3-clusters. I t  also shows that  O1- and O2-clusters (which are the max imal  
at T =  To) do not  contr ibute  significantly to the distribution. 

After these tests we apply  our  me thod  to the surface problem.  In 
addi t ion we have t /A as a scaling variable near  a phase  t ransi t ion of the 
surface. Therefore  in the case of  special transit ion, scale-invariant  functions 
can also depend on 

zt = ( 1 - - J ~ ) L  ~/~ (3.13) 

The  a n o m a l o u s  dimension y,  of t /A can be determined by the surface 
susceptibility (2.17) with the result 

(3.14) y, = -  l/v 

If  FSS applies, the momen t s  (2.13) should scale like 

Mnm(O) ) = L  -n~/ .... (e~ B)/~_/~nm(O, Z, Zt) 

10  0 

P (• 

(3.15) 

1 0 -2 

1 0 -~' 

1 0 -e  

V l = 3 

A t = 1 , 2  

[] I = 0 

I 0 -8  , ~ , , , , , 

0 -~' 1 O "3 1 0 -2 1 0 -1 1 O o 
X 

Fig. 9. The cluster size distribution p(x) with x = s~ V of a d = 3 Ising model with p.b.c, and 
lattice size L = 20. The solid lines represent the contribution of finite and percolating clusters 
taken from the parametrization of ref. 9. The dashed line is a guide to the eye. 
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where O is one of the properties 1, Or, O~p. At the ordinary transition .~  
is simply a function of J~. Again (3.15) should be applied to O0 or 1 only 
for n ~> 2. In the next section we will determine J1c by dimensionless ratios 
and fl~ by the L or z~ dependence at z = 0. 

In the tested models with periodic boundary conditions we found no 
indication for a violation of the scaling law (3.4), as already noted in ref. 9. 
This turned out to be different in the surface problem, where we encoun- 
tered a small correction to scaling. Since we do not have a systematic way 
to treat these nonleading terms, we apply phenomenological formfactors in 
each case separately. 

4. IS ING M O D E L  W I T H  F I L M  G E O M E T R Y  

For the area of each layer in the film geometry we have the number 
of surface points as A = 2L 2, where L denotes the thickness of the film. 
We checked that other choices for the layer area would not change the 
observables if A does not differ from 2L 2 by an order of magnitude. In 
the simulation we chose the starting points used by the single-cluster 
algorithm alternating between volume and surface. In the case of the 
special transition we generated 20000-100000 clusters per point at T =  Tc 
in the range 10~<L~<40 and 1.45<~J1/J~ 1.55. We took the value of Tc 
(J/k~Tc= 0.221165) from ref. 27. We checked that other choices, such as 
our value (3.10) or the result of ref. 24, had no influence on the results of 
the surface quantities reported below. For  the ordinary transition we 
generated clusters with less statistics in the same L range for T~< Tc and at 
fixed J1/J = 0.5. 

As a test of thermalization w e  can check the equality (2.16) of 
moments obtained with volume or surface starting points. The observable 
Xl with property Ot can either be measured by the number t of surface 
cluster points per area A in the volume method or the number s of volume 
cluster points per volume V in the surface method. Therefore the ratios Pt 
defined by 

V ( t O t )  
p,= (4.1) 

A (sOt)A 

should be 1 in thermal equilibrium. Figure 10 shows Pt as a function of J1/J 
for different L at T =  To. The reg ionof  the multicritical point is presumably 
the worst case for thermalization. Inside the errors Pt = 1 holds. The same 
is true for other moments related by Eq. (2.16). 
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Fig. 10. Ratio Pt of Mlt(Ot) at T =  T C determined by volume and surface starting points as 
a function of the surface coupling near the special transition. O, L =  10; A, L =  16; 
V, L = 24; El, L = 40. If thermal equilibrium is reached, a value of 1 is expected. 

We determine the value (Jt/J)c for the multicritical point with a 
similar method as in Section 3. We define the following dimensionless ratio 
of moments  at T =  To: 

M2k(O2p) (s(t/s)kO2p) 
rk(z l )  M2k(Oo) ~ r = r c  (4.2) 

If FSS holds, rk can only depend on the scaling variable z ~ =  
(1-Jl/Jlc)LWL The ratio rk becomes independent of L at the critical 
value of Jr. The data for In r~ as a function of J1 are shown in Fig. 11. 
They are compatible with a linear behavior in JL and a c o m m o n  point of 
intersection. From a fit indicated by the lines in Fig. 11 we obtain 

( J ~ / J ) c  = 1 . 5 0 0 4 ( 2 0 )  (4 .3 )  

The same data are shown in Fig. 12 as a function of z~. The lines for 
different L collapse into a single curve, provided O/v is chosen as 

O/v = 0.729(15) (4.4) 

This value of O/v has been obtained by a linear fit to In rl (also shown in 
Fig. 12) including (b/v as a free parameter to achieve best scaling. In 
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Fig. l l .  Ra t io  In r l ,  wi th  r I defined as the m o m e n t  ra t io  (4.2), as a funct ion of J l /J  for 

var ious  L at  T = T c. The crit ical  J~c/J is the c o m m o n  poin t  of intersect ion.  The lines are l inear  
fits to the data.  
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Fig. 12. The same da ta  as in Fig. 11 as a funct ion o f z  1 = (1 - -J l /J lc)L  ¢'/v. The line represents  
a l inear  fit inc lud ing  (b/v as parameter .  If  FSS holds,  all  da ta  should  lie on the same universa l  
curve. 
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Table II. Resulting Parameters in Fits to the Moment  Ratios (4.3) 

Used r Jlc/J 60 61 62 

r 1 0.729(15) 1.5004(20) - -  - -  - -  
ro, rl, r 2 0 . 7 2 9 ( 9 )  1 .5002(10)  -0.0065(2) -0.01(3) 0.07(1) 
to, r~, r 2 0 .740 (20 )  1.4991(16) 0 0 0 

contrast  to r l ,  the ratios r 0 and r 2 exhibit a small bu~ significant violation 
of scaling. This violation can be described by an addit ional form factor 
F(6) to the theoretical expression of  rk: 

For  F we use the form 

rk(zl, L) = F(fk, L )Ak e Bkzl 

F(6, L)= E1 + (Lo/L)P] ~/e 

(4.5) 

(4.6) 

The data  are not  sufficiently accurate to determine L0 and P independently 
of 6. Therefore we choose P = 2 and Lo = 60. The values of 6k, q)/v, J1/J, 
and the constants  Ak, B~ are free parameters  in a fit to the data  of  In rk. 
The 6k turn out  to be small (see Table II) ;  in particular, ~1 is compatible 
with zero. r and Jlc/J agree within errors with (4.3) and (4.4). Omit t ing 
the form factor at all (6x = 0) has no consequences for the values of  r and 
Jlc/J, but  the x2/DOF doubles. Other  moments  different f rom (4.3) have 
less statistical significance. Since we need no corrections for the data  of r~, 
we take the result of  (4.3) and (4.4) as our  final values quoted  in Table III.  
We estimate /31 from the L dependence of  the following moments  at 
T=T~: 

mnk(O2p)=l(v)n-l(tV~ko2p)\-~] (4 .7)  

Tab le  III. Comparison of Values for the Critical Parameters of the Present 
Work  wi th  Values Given in the Literature ~ 

J,JJ r B7 ~ 

Present 1.5004(20) 0.461(15) 0.237(5) 0.75(2) 
Landau and Binder 1.52(2) 0.59(4) 0.18(2) 0.78(2) 
Mean field (e ~ 5/4 1/2 1/2 1 
e-Expansion linear - -  0.41 0.250 0.833 
e-Expansion quadratic - -  0.68 0.245 0.816 

a We use fl =0.330 and v = 0.633 from ref. 24 to convert the merasured values into the values 
given here. 
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In the scaling ansatz for M,k we allow a possible violation of scaling by a 
multiplicative formfactor as in (4.5): 

Mnk( O2p , Z1, L) = L kAq -n'a/VF(O:nk, L) -~I,k(zl) (4.8) 

The first factor on the r.h.s, of (4.8) reflects the anomalous dimension of 
M~k, which depends on fll via 

1 
At /=t / •  = -  ( f l - f i~ )  (4.9) v 

For  F(e, L) we take the parametrization (4.6) again. The last factor in (4.8) 
contains the scale-invariant dependence on zl. Even with known fi/v our 
accuracy does not allow us to extract At/from (4.8) without an assumption 
on the scaling violation parameter  ~nk. If we consider cross ratios like 

Mnj,k + K Mn2,k- K 
M.,,k + ~'M.2.k-K' 

which depend at a fixed zl only on the ratios of formfactors like F(~nK.L)/ 
F(a.K~, L), we find that those ratios are independent of K, K'  (see Table IV). 
Therefore we assume that a.k does not depend on k, which is compatible 
with the data at least. With this assumption (4.8) reads now 

Mnk(O2p , Zl, L)  = (F(a,, L ) L  -'~/v) Lk~"ffl,,k(zl) (4.10) 

The first factor on the r.h.s, of (4.10) depends on n only and allows a 
determination of ~, if fi/v is known. The L dependence of moments  with 
different k determines At/. If  we restrict the range ofz~ to [z~( <~0.4, a linear 
dependence on zl turned out to be sufficient for the scaling function In/~r. 
In a fit to the n = 1 moments  with k = 0, 1 and fl/v = 0.512 we obtain 

cq = 0.008(6), At/= 0.147(6) (4.11) 

Table lV .  Values of Ratios of M , , , ( O z )  Moments  at z = z l = 0 ,  Which Are 
L Independent  If the Assumption (4.10) about the Formfactor  Is Correct 

L MlO Mll/Mol M2o Mll Moo/Moa Mlo Moo Mzo/M~o L[~/VMlo 

10 1.32(4) 0.80(3) 0.60(3) 1.25(1) 
16 1.31(5) 0.84(3) 0.64(3) 1.25(1) 
24 1.28(6) 0.82(5) 0.64(4) 1.23(I) 
40 1.29(5) 0.81(4) 0.63(3) 1.24(1) 
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and similarly for the n = 2 moments with k = 0, 1, 2 

e2=0.065(2), At/=0.147(2) (4.12) 

In Fig. 13 and 14 we show the data for M~L"I~/v/F(c~n, L) and the fit for 
M~k(zl) as a function of zl for various L. The fit shows that the L 
dependence is adequately described by the parametrization (4.10). e2 ~0  
signalizes a small violation of scaling in the moments M2k, whereas the L 
dependence of M~k is in accordance with FSS. Absence of scaling violations 
in M~o can be seen directly by Lt~/~M~o given in the last column of 
Table IV. The values (4.11) and especially (4.12) vary slightly with the 
values L0 and P chosen in the parametrization (4.6) of the form factor. We 
can estimate a systematic error of At/ by varying Lo and P inside 
reasonable margins, obtaining our final value for 3t/: 

At/= 0.147(8) (4.13) 

At~ can be converted into a value f o r / ~  using (4.9): 

/~' = 0.237(5) (4.14) 

1.6 

v zx 

1.2  ~ ~ 

~; v [V}2 0 

O; 

0 . 8  

, L-16 
L = 24 ~ 

[3 L 40 

0 . 0  ~ ' ~ ~ ~ ~ ~ - -  

-0 .4 ,  - 0 . 2  0 . 0  0 . 2  0 .4  

Z1 

Fig. 13. Plot of In M2,k(zl) defined in (4.10) at T =  T c as a function of z i for various L and 
k = 0 ,  1, 2. The lines are linear fits to the data including 3rl and the formfactor as free 
parameters as described in the text. 
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Fig. 14. Plots of ~r~0(zl) and M'H(zl) at T =  Tc as a function of z~ for various L. The fit 
using a linear z I dependence represented by the lines includes 3r /as  a free parameter (the form 
factor is set to 1). 

From Table III we see that (4.14) agrees with the determination of ref. 3 
inside 2 standard deviations. 

There are two reasons which explain the gain in accuracy of Jlc, r 
and 3t/ by similar or less computational effort in comparison with ref. 3. 
First we use improved observables which are more sensitive to scaling and 
second the L dependence within FSS occurs not only in scaling factors like 
L -a", but also in the argument zl. The latter property is lost at the 
ordinary transition, where J1 ceases to be a relevant variable. In order to 
de te rmine /~  we have to study the moments as a function of L and T. We 
expect for ? defined as 

the following scaling law: 

M21(O2p) V (tO2p} 
M2o(Ozp ) A (sO2p 

(4.15) 

~(z) (4.16) 
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fit wi th  a cons tan t  ~7 includes  fl~ - fl as a free parameter .  

Our sample of data does not allow us to detect more than a constant 
behavior of the scaling function 9. In Fig. 15 we show y]l - rite] ~-1 as a 
function of 1 -  T/Tc in the ordered phase at J1 =0.5J. The data are 
compatible with a constant ~7, which has been determined together with 
f l y -  fl by a fit. This gives 

f l~ -  fl = 0.421(22) (4.17) 

Since 7 approaches the ratio of the order parameters mJm for L ~ oc (see 
Appendix), the constant value ~ can be taken as an estimate of the 
amplitude ratio 

--~ =0.77(5) (4,18) 
J] = o.sJ 

Both critical index (4.17) and the amplitude ratio (4.18) agree with the 
result of ref. 3. 

5. C O N C L U D I N G  R E M A R K S  

Our method employs clusters with nontrivial topological properties to 
extract critical parameters, assuming that moments have a scaling dimen- 
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sion independent of the loop number. The method has been tested success- 
fully in models with periodic boundary conditions. In particular, the value 
for the critical temperature in the d=  3 Ising model has an accuracy com- 
parable to the series expansion of ref. 24 (see Table I). It agrees within 2 
standard deviations with the more accurate values from Monte Carlo 
renormalization group methods (25) or the histogram method. ~27) Our new 
results refer to the critical parameters related to the d--3 Ising model 
embedded in film geometry. Table II1 gives the comparison of our values 
with the results of ref. 3. The critical coupling (J~c/J) and the magnetic 
index fl~ agree, whereas we encounter a disagreement of 2-3 standard 
deviations for (~/v and fiT. Both methods are difficult to compare, since we 
work exclusively at T=  Tc using FSS, and in ref. 3 the T dependence of 
the infinite lattice is employed. The lattice sizes are similar (L~<40) in 
either case, whereas the type of possible scaling violations differs. We use 
multiplicative form factors, which cannot be represented by a shift of the 
critical temperature made in ref. 3. An answer probably requires a study of 
substantially larger lattice sizes. 

Our results can be compared with the e-expansion (1) (see Table III). 
For fl~ or fl~' the e-expansion shows some kind of convergence and we find 
good agreement. Since the e-expansion, the disagreement with our value 
should not be taken too seriously. 

Our method uses FSS at the bulk critical temperature. Therefore 
determination of the amplitudes is impossible. Moments as functions 
of T have to be studied. In the ordered phase the problem is aggravated 
by the necessarity to subtract the corresponding combinations of order 
parameters (see Appendix). We hope to return to these questions in a 
separate publication. (2s) 

A P P E N D I X .  S U S C E P T I B I L I T I E S  A N D  M O M E N T S  

To derive the relation between moments and susceptibilities Z, we start 
with the two-point function 

g(x, y ) =  (t7.~%) (A1) 

Evaluating the r.h.s, in the SW algorithm, we have 

g(x, y ) = { ~  cr cac, Ac(x) Ac,(y)} (A2) 
c, c '  

where 

Ac(x) = {~ x e c  (A3) 
otherwise 
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Since spins in different clusters are independent, only the terms with c = c' 
survive: 

The various susceptibilities in the disordered phase are sums over x, y in 
the bulk and/or in the surface. The bulk susceptibility is given by 

1 1 {~s:}=VM2o(1 ) (A5) z --- g(x, y ) :  F 
x, y 

The surface susceptibility Zll and the mixed susceptibility Z1 are given by 

1 1 {~c t:}=AM22(1) (A6) Zll : A 2 g(x, y)-=-~ 
x , y ~ A  

and 

Zi A ~ g(x, y)= 1 =-- Sct~ = VM21(1) (A7) 
x ~  V , y ~ A  

The cluster moments are averages over positive number in contrast to 
averages over axay which have both signs. As a result the variance of 
VM2o is much smaller than the variance of (1/V)(~. x ax) 2. For  example, 
in the limit T ~  ~ we find A2((~ (r~)2/V) =2 ,  whereas A2(~cs~/V)~J/T. 
In the ordered phase the unsubtracted susceptibilities (A5)-(AV) diverge 
with L ~ oo with a constant Mn,~. From this divergent part the order 
parameters can be estimated as 

lim Mk, l=  (m)k-t(ml) l (A8) 
L~oo 

For a dimensionless SW distribution we see that m determined by 

m 2= lim ~- Oa (A9) 
L ~  

has the same dimension as the percolation order parameter rap. 
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