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Study of the Three-Dimensional Ising Model on Film
Geometry with the Cluster Monte Carlo Method

C. Ruge,' S. Dunkelmann,' F. Wagner,' and J. Wulf!

Received December 17, 1992, final March 10, 1993

Topological properties of clusters are used to extract critical parameters. This
method is tested for the bulk properties of d=2 percolation and the 4=2,3
Ising model. For the latter we obtain an accurate value of the critical tem-
perature J/k,T,=0.221617(18). In the case of the d=3 Ising model with film
geometry the critical value of the surface coupling at the special transitions
is determined as J,./J=1.5004(20) together with the critical exponents
BT =0.237(5) and ¢ =0.461(15).

KEY WORDS: d=3 Ising model; cluster algorithm; critical temperature;
finite-size scaling; surface-related critical exponents.

1. INTRODUCTION

The critical behavior of magnetic materials with variable strenght of
coupling on the surface is characterized by surface critical exponents
independent of the bulk exponents. For their theoretical determination
g-expansion,!) series expansion,”®” and Monte Carlo methods>* were
applied. The latter are made conveniently using a d=3 Ising model
embedded in a film geometry. In ref. 3 it is shown that using the Monte
Carlo method critical parameters can be determined with comparable or
higher accuracy as compared with other methods. In this paper we report
on Monte Carlo simulations of the same model using an improved method:
the cluster algorithm. This will lead to a considerable gain in accuracy.
We consider Ising spins ¢, defined on the sites x of a d-dimensional
cubic lattice with periodic boundary conditions in d — 1 directions and two
free surfaces in the remaining direction (so-called film geometry). If we take
the nearest-neighbor coupling J, in the surface layers different from the
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bulk coupling J, we get the following expression for the energy of a spin
configuration:

E=~J ) a.0.,,-J, Y 0.0, (1.1)

(xp)¢ A (x.u)e 4

The second sum runs over all surface links (x, u) which are excluded in the
first. A schematic phase diagram® in the J,/J, T plane is depicted in Fig. 1.
For temperatures approaching the bulk critical value T, from above the
bulk can order either with a paramagnetic surface (ordinary transition at
small J,/J) or in the presence of an already ordered surface (extraordinary
transition at large J,/J). Both regions are separated by a multicritical
region (special transition at J,,/J). In each region the surface magne-
tization is characterized by its own critical exponent #,. Near the special
transition there is an additional anomalous dimension — ¢/v for the surface
coupling (J, —J,.)/J. The aim of this paper is to determine J,,/J as well as
the critical indices at the ordinary and special transitions.

In ref 3 a local Monte Carlo method was employed. For several
reasons a cluster algorithm®” may improve the accuracy. Besides the
considerable reduction of critical slowing down of a cluster algorithm as
compared to a local algorithm, improved extimators, for example, for the
susceptibility can be used. Moreover, the distribution of large (percolating)
clusters exhibits the behavior expected from finite-size scaling (FSS). It has

3,/
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-

Fig. 1. The phase diagram for the d=3 Ising model with film geometry in the J,/J, k5 T/J
plane.
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been demonstrated that bulk critical indices can be extracted from the
distributions both for the Swendsen-Wang algorithm® and the single-
cluster method.® Hitherto, the separation of these large clusters remained
unsatisfactory. The criterion of the largest cluster in a Swendsen-Wang
decomposition of the lattice used in ref. 8 cannot be applied to the com-
putationally simpler single-cluster method. The separation in ref. 9 relies on
a parametrization of the cluster size distribution. Criteria based on perco-
lation usually require free surfaces, which leads to a slow approach to the
inifinite system. In this paper we use a topological property of the large
clusters. Within periodic boundary conditions a loop number / is assigned
to a cluster if it contains a set of sites allowing paths going around the
torus in / independent directions. Only the large clusters can contribute to
1#0. The percolating cluster, which appears at the transition into the
ordered phase, has /=4 on a large but finite lattice. Our main observation
is that the anomalous dimensions in FSS of cluster observables are inde-
pendent of the loop number /# 0. A similar observation has been made for
clusters defined as regions of equal spins in ref. 10. Therefore ratios of
observables with different / can depend in the scaling region only on dimen-
sionless variables such as the ratio of lattice size L to correlation length £.
At T=T. the ratio L/¢ vanishes independent of L, leading to a determina-
tion of an unknown T7.. Such dimensionless ratios can be formed by a
suitable combination of #-point functions also for spin variables (e.g., the
fourth-order cumulant of the order parameter as advocated in ref. 11).
However, n-point functions including the disconnected parts are almost
constant, whereas connected ones are difficult to determine. We shall
demonstrate that moments of the cluster size distribution exhibit enough
variation to allow an accurate determination of T,.

Before we apply our method to the surface problem mentioned above
we will test it in cases where either exact or sufficiently accurate results
are available. For this purpose we select d=2 bond percolation® and
the Ising model in d=2, 3" dimensions, all with periodic boundary
conditions (hereafter abbreviated by p.b.c.).

The paper is organized as follows. In Section 2 the cluster algorithms
are summarized and the necessary modifications in the case of a surface
problem are given. Section 3 contains the description of the method to
extract critical parameters and the results for the known models. In
Section 4 we report on the new results for the critical parameters at the
ordinary and special transitions for the d=3 Ising model with film
geometry. We also discuss possible violations of FSS. Some of the results
independent of scaling violations are published in a letter."* Section 5
contains our concluding remarks.
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2. CLUSTER ALGORITHM

We use a d-dimensional sc lattice with either periodic boundary condi-
tions or film geometry. In the first case we have V=L sites and in the
second case A surface points are contained in the total number of sites
V=1AL. First we discuss the cluster algorithm with no surfaces. The
generalization to film geometry will be given later.

The models considered here are special cases of a Q-state Potts model
(see, e.g., ref. 15). Each spin o, can take Q different values. The bulk part
of the energy is given by

E=—J0Y 6,0, (2.1)
X, H

Q=2 amounts to the Ising case and extrapolation to Q =1 describes the
bond percolation.!?) One is interested in averages of an observable O in
thermal equilibrium

1 1
O==> 0 ——F .

©0=3 % 0)exp [~ 7 E) (2)

where Z is given by (1> =1. In order to simulate the sum (2.2) with the

algorithm of Swendsen and Wang® (hereafter abbreviated by SW), a

sequence of configurations is generated in two steps. First all the links

{x, 1) of the lattice are activated according to the following probability
px, py.

o.xséo-x +u

0
p(x, “)z{l—exp(—QJ/kBT) Ox=0yxiy >

Sets of sites with equal spin ¢ connected by activated links are called
clusters.
In the second step the spin value of each cluster is chosen out of the
Q possible values at random. Since the cluster spins are independent, an
improved estimator for the susceptibility y at 7> T, can be derived"'® (see
also the Appendix):
2
2T, L)= {Z SI—/} (2.4)
In (24) 3. stands for a sum over clusters of one decomposition of
the lattice and {-} denotes an average over different decompositions.
The observable (2.4) can be generalized to the moments of the cluster

distribution
s\
w~{z ()} @9
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In the O =1 case thermal averages (2.2) become trivial. p(x, u) is independ-
ent of the link, but still 7 dependent, and the moments (2.5) describe the
usual bond percolation. In each configuration we have the identity

Ys.=V (2.6)

Therefore the moments M, are normalized to M, = 1. In the ordered phase
for T< T, there exists at most one percolating cluster if the dimension is
less than 6.'”) This is strictly true only in d=2. For d>2 it is generally
believed that this holds to a very good approximation."® If we define the
property @, for this cluster on a finite lattice, the probability m, of a site
belonging to this cluster defines an order parameter for L — oo

m, = {Ii/ @W} (2.7)

For the following we do not need the equality of (2.7) with the usual
magnetization, we only require m, having the same anomalous dimension.

In each Monte Carlo step a decomposition of the lattice into clusters
is needed for the averages {-}. Even though there exists an efficient algo-
rithm for this purpose,*®) this can be avoided by the single-cluster method
proposed for percolation by Leath® and for correlated percolation by
Wolff.(") The sum over all clusters in the single-cluster observable (2.5) is
evaluated by generating only one cluster in each step using probabilities
(2.3) starting at x,. Choosing this site and its cluster with probability
g(xy, ¢), one can replace the average (2.5) by

= (a7 ), &

The efficiency can be further increased”-*") if in each spin update the cluster
spins are given a random value different from the old one. The choice of
q(x, ¢) is restricted by the normalization condition 3, g(x,, ¢)=1 for
each SW decomposition. Wolff used the identity (2.6) for the choice

(2.9)

Se
Q(XO, C) :?

which means the starting site x, is chosen at random in the lattice. With
(2.9) and (2.8) we get for the moments

(57
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Here (-) denotes an average over the single cluster steps [as <{-), in
(2.8)]. The single-cluster method is easier to implement and can lead to
higher efficiency."*> Both cluster methods can also be applied to other
spin models than the Q-state Potts model."®?!") In this case relation (2.4)
between the moment M, and the usual susceptibility does no longer
hold.*

In relation (2.7) for the order parameter we need an estimator for the
infinite cluster on a finite lattice. With periodic boundary condition we can
assign a loop number / (0 < /< d) to each cluster, which means that inside
the cluster at least / paths exist going around the torus in / independent
directions. The property for these clusters is denoted by @,. Examples are
given in Fig. 2 for a 3 x 3 lattice in d=2.

Only clusters with loop number 4 can contribute to the order
parameter (2.7), since in the limit /L — 0 for T'< T, there exist only finite
clusters and the percolating cluster. Therefore we estimate m,, by

S
= {70.= o0 @11)

With the help of ©®, we can also measure the size distribution of clusters
with loop number /, which is expressed by the moments

wor s ol-(() o) am

The advantage of moments (2.12) with /#0 over the moments in (2.5) is
their higher sensitivity to large clusters. Therefore they approach the
scaling limit faster. Since Y, @,= 1, the moments (2.5) can be expressed by
(2.12).

Fig.2. Examples of s=35 clusters in a 3x 3 p.b.c. lattice with different loop numbers. The
sites of the clusters are denoted by () and links belonging to the cluster by double lines.
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We now turn to the modifications and generalizations implied by the
presence of a surface. The SW algorithm has to be modified in such a way
that on the r.h.s. of (2.3) the interaction strength J is replaced by J, for
links in the surface. The loop number / in @, can vary over /=0,..,d— 1.
In addition there is the property @, for clusters having sites in both
surfaces. Since each cluster may contain ¢, surface sites, we can define the

moments
Mnm(@)={2 (%)m@;)m @} (2.13)

<

where ©® may be any property chosen from 1, @,, @,. Within the single-
cluster method the moments (2.13) are given by

M, (@)= <<%,>Hn_1 (é) @> (2.14)

Due to the identity

Vi =4 (2.15)

c

the moments M,,, are normalized to M ,y(1)= M,,(1)= 1. Equation (2.15)
allows also a modification of the Wolff method. Choosing the probability
g(x,, c)=1t./A implies that the single-cluster algorithm starts anywhere in
the surface. Denoting these averages by - ), we can express the moments
M, (@) also by the surface cluster method or

G e o

Due to (2.16) we do not get new information by this method. However, the
statistics on surface quantities can be improved. Using only clusters start-
ing in the surface will lead to a poor description of thermal equilibrium in
the bulk. Thus we will use both kinds of starting points in equal amount.
As in the bulk case, the surface susceptibilities in the disorded phase can be
expressed in terms of the moments M, (1):

! 1
n=+ > <axa_y>=z{g tcsc}=Vle(1) (2.17)

xeV,ye A

The details are given in the Appendix.
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3. DETERMINATION OF CRITICAL PARAMETERS

In previous investigations®®’ it has been shown that the large clusters
exhibit a behavior expected from FSS. Let us first discuss the implications
of FSS for the bulk moments (2.12). If s/V also becomes a scaling variable
with anomalous dimension y,, we expect the following behavior of the
moments near the critical point T:

MAT, L, 6)=L""""M/(6,,z) (3.1)

where y,, describes the dimension of the SW distribution and z is a
scale-invariant variable, for which we take

z=<FT—1>L”“ (3.2)

[

We prefer (3.2) to the usual Fisher variable (=|z|"), because it keeps track
of the sign of T— T,. Furthermore, it will turn out that the functions M
and their ratios can be parametrized in most cases by ecither linear or
exponential functions in z, which would become complicated using |z|". As
in ref. 9, y, and y,, can be expressed in terms of the known dimensions of
M, (=y/V) and the order parameter (2.11), which gives

Yow=0
yo=—Pfv
The scaling law (3.1) applies only to moments sensitive to large clusters,

which means M ,(@,) has to be excluded for n<2. If we take ratios of
M, (O,) with different /

M,(9))
Mn(@l’)

(0, 0,.2)= (3.3)

we have observables which can depend on z only. Equation (3.3) provides
an easy way to locate an unknown 7. If r, is plotted as a function of T
for different L, r, becomes independent of L at T=T, (or z=0). With T,
known, a value for v follows from the requirement that for different L the
ratio r, should lie on the same universal curve as a function of z. Finally,
B/v can be determined from the variation of M, at z=0:

Mn(@l,L)T:TrzLAnﬂ/an(@laO) (34)

The method works only if the moments vary in the critical region at all.
This is expected, since in the limit z — oo we get no clusters with loop
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number /#0, whereas in the limit z > —oc a finite fraction of clusters
with /=d must be present. Therefore at least r,(8,, @, z) has to show a
substantial variation crossing the critical point at z = 0.

The first model we want to test is d=2 bond percolation. We
generated 20000 clusters per point in the range of 0.495 < p <0.505 with
p=1—exp(—J/kyT). In Fig. 3 the ratio

M, (0,
r(p, L)ﬂﬁ (3.5)

is shown as a function of p for different lattice sizes L, which obviously
have a common point of intersection. From a linear fit to In r we obtain the
critical value of p:

p.=0.49996(11) (3.6)

close to the theoretical value 1/2."'% With p_= 1/2 the same data are shown
in Fig. 4 as a function of z= (p.—p)L'", where 1/v is fitted together with
a straight line to ln r(z), to obtain the best scaling behavior:

y=137(5) (3.7)
4.00
1O
inr|a
325 4 V
+
4 O
2.50 ~
1.75 H
1.00 T T T /[\ T T T
0.484 0.497 0.500 0.503 0.506

P

Fig. 3. Plot of Inr, with r defined as the moment ratio (3.5) for d=2 bond percolation, as
a function of p for different lattice sizes. The lines represent linear fits to the data. The
common point of intersection gives p,.
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Fig. 4. The same data as in Fig. 3 shown as a function of z. If FSS holds, the data collapse
into a single line. The straight line corresponds to a fit including v as a free parameter.

-0.2

N M, (0,)-

-0.6

-1.0 A

-1.4 —T T T

in L

Fig. 5. Plot of In M,(©,) at p= p_=1/2 for d=2 bond percolation as a function of In L with
n=1, 2. From the slopes the value (3.8) for f/v is determined by a straight-line fit (solid lines).
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The validity of FSS is obvious. Figure 5 shows the L dependence of
M (6,) at p=p, with n="1,2 on a double log scale. The power law
implied by (3.4) is well satisfied. From the slopes #fi/v in a double log plot
we obtain

B/v=0.104(2) (3.8)

The values (3.7) and (3.8) are in agreement with the theoretical values,
which are given in Table I. Other moments or ratios exhibit the expected
behavior with less statistical significance.

Now we apply the same method to the Ising model dimensions
with p.bc. in d=2,3. To determine (kz7/J). we typically generated
20000-100000 clusters at each value of 7" and L.

Figure 6 shows the most significant ratio r= M,(@,)/M,(6,) as a
function of J/(kzT) for various L. Again a common point of intersection
is evident. Fitting ln r by straight lines, we obtain

J
=2 ) =0.440686(10 3.9
d=2 (kBT)C 0.440686(10) (3.9)
d=3: ( J ) =0.221617(18) (3.10)
=3 1) =0 .

The errors in (3.9), (3.10) include the measured autocorrelation time. The
achieved accuracy is surprisingly high, considering the moderate computing
effort. Our result for d=3 agrees with the series expansion by Liu and
Fisher® and within 2 standard deviations with the result from the Monte
Carlo renormalizations group®?® and the histogram method of ref. 27.
The same data are shown in Fig. 7 as a function of z, including v as a

Table!. Comparison of Critical Parameters Obtained by the Cluster Method
(Values without Reference) with Values Given in the Literature

Ji(kpT,) or p, v Biv

Bond percolation, 0.49996(11) 1.372(49) 0.104(2)
d=2 1209 4/348) 5/48U%)

Ising model, 0.440686(10) 1.001(3) 0.126(3)
d=2 0.4406867 - - . 13 103 /803

Ising model, 0.221617(18) 0.636(5) 0.516(7)

d=3 0.221630(10) 0.63304 0.52209

0221654(6)5) 0.516(6)®

0.221658(3)?"

822/73/1-2-20
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0.432 0.436 0.440 0.44L 0.448
12'00 1 1 1 1 1 L 1 8‘0
S L= 10 l
4 A L =20 {
tin r 5 .
0 . F 4.5

~-6.0
0.2195 0.2205 0.2215 0.2225 0.2235

J/ke T

Fig. 6. Plot of Inr with r=M,(0,)/M,(8,) as a function of J/(kzT) for various L for the
Ising model with d=2 (upper part) and d=3 (lower part). The lines are fits to the data with
a common point of intersection giving the values (3.10) for J/kT,.

-1.6 -0.8 0.0 0.8 1.6
9 . : . . L ) . 6
i d=2 ]

6 L 5
i o
31 Lo
b d=3 -

0 T T T T T T T -3
-2 -1 0 1 2

Z

Fig.7. Same data for In r as in Fig. 6 as a function of z= (T/T,— 1)L for d=2 and d =3
Ising model. Within FSS the data should lie on the scaling curve. From the slopes of a
straight-line fit a value of 1/v is obtained, giving the values of (3.11).
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parameter in the straight-line fit. The ratios nicely follow the universal
curve predicted by FSS with the v values

d=2 v=1.001(3)

(3.11)
d=3  v=0636(5)

As in the percolation case, fi/v can be obtained from the L dependence of
M (@,) at T=T,, taken from ref. 27 in the case d= 3. Figure 8 shows M.
The fitted slopes for n=1, 2 lead to

d=2  B/v=0.126(3)

(3.12)
d=3  B/v=0516(7)

As in the previous case, the used moments are those with the highest
statistical accuracy. The critical exponents derived by other moments are
compatible within the errors. Table I summarizes the comparison with
other methods, which shows that using clusters with loop number different
from zero leads to a reasonable accuracy for critical exponents in the tested
models. In our previous investigation® the large clusters were separated by
a parametrization of the cluster size distribution. To demonstrate the

2.0 2.8 3.6 L4

2.3 2.7 3.1 35
In L

Fig.8. The moments In M,(@,) at T=T, for the d=2, 3 Ising model with n=1,2 as a
function of In L. The slopes of the straight-line fits give nf/v.
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validity of this approach, Fig.9 shows this distribution of cluster sizes
x=s/Vat T=T,and L =20 for the d=3 Ising model together with the fit
of ref. 9. At low s the @,-clusters dominate. The decrease with a power law
is determinated by the animal exponent of percolation.® The peak at high
s we previously assigned to the percolating cluster is completely given by
O ,-clusters. It also shows that @,- and @,-clusters (which are the maximal
at T=T,) do not contribute significantly to the distribution.

After these tests we apply our method to the surface problem. In
addition we have #/4 as a scaling variable near a phase transition of the
surface. Therefore in the case of special transition, scale-invariant functions
can also depend on

z1=( —l'i> L (3.13)

ic

The anomalous dimension y, of #/4 can be determined by the surface
susceptibility (2.17) with the result

ye=—pi/v (3.14)
If FSS applies, the moments (2.13) should scale like
Mnm(@)IL‘nB/V¥m(B17B)/anm(@7 Z, Zl) (315)

1
1
vV L =3 '1
4 AL =12 s
O =20
1078 T T 1 T T T
10™ 1072 1072 o 10™ 10°

Fig. 9. The cluster size distribution p(x) with x=5s/V of a d=3 Ising model with p.b.c. and
lattice size L =20. The solid lines represent the contribution of finite and percolating clusters
taken from the parametrization of ref. 9. The dashed line is a guide to the eye.
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where © is one of the properties 1, @,, @,,. At the ordinary transition M
is simply a function of J,. Again (3.15) should be applied to €&, or 1 only
for n=2. In the next section we will determine J,. by dimensionless ratios
and j, by the L or z, dependence at z=0.

In the tested models with periodic boundary conditions we found no
indication for a violation of the scaling law (3.4), as already noted in ref. 9.
This turned out to be different in the surface problem, where we encoun-
tered a small correction to scaling. Since we do not have a systematic way
to treat these nonleading terms, we apply phenomenological formfactors in
each case separately.

4. iISING MODEL WITH FILM GEOMETRY

For the area of each layer in the film geometry we have the number
of surface points as 4 =2L? where L denotes the thickness of the film.
We checked that other choices for the layer area would not change the
observables if 4 does not differ from 2L? by an order of magnitude. In
the simulation we chose the starting points used by the single-cluster
algorithm alternating between volume and surface. In the case of the
special transition we generated 20000-100000 clusters per point at T'= T,
in the range 10< L <40 and 145<J,/J<1.55. We took the value of T,
(J/kgT-=0.221165) from ref. 27. We checked that other choices, such as
our value (3.10) or the result of ref. 24, had no influence on the results of
the surface quantities reported below. For the ordinary transition we
generated clusters with less statistics in the same L range for 7< T, and at
fixed J,/J=0.5.

As a test of thermalization we can check the equality (2.16) of
moments obtained with volume or surface starting points. The observable
x1 with property @, can either be measured by the number ¢ of surface
cluster points per area A4 in the volume method or the number s of volume
cluster points per volume V in the surface method. Therefore the ratios p,
defined by

18,
56,4

NN

pi= (4.1)

should be 1 in thermal equilibrium. Figure 10 shows p, as a function of J,/J
for different L at T'= T . The region of the multicritical point is presumably
the worst case for thermalization. Inside the errors p,= 1 holds. The same
is true for other moments related by Eq. (2.16).
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1.42 1.46 1.50 1.54 1.58

3,/

Fig. 10. Ratio p, of M,,(@,) at T=T, determined by volume and surface starting points as
a function of the surface coupling near the special transition. ¢, L=10; A, L=16;
V, L=24; 01, L =40. If thermal equilibrium is reached, a value of 1 is expected.

We determine the value (J,/J), for the multicritical point with a
similar method as in Section 3. We define the following dimensionless ratio
of moments at T=T_:

_ My (0,,) _ (s(t/5) 05,
May(0o)  <s(1/5)“00) |7- 7,

ri(zy) (4.2)

If FSS holds, r, can only depend on the scaling variable z,=
(1—J,/J,.)L?". The ratio r, becomes independent of L at the critical
value of J,. The data for Inr, as a function of J, are shown in Fig. 11.
They are compatible with a linear behavior in J, and a common point of
intersection. From a fit indicated by the lines in Fig. 11 we obtain

(J1 /). = 1.5004(20) (4.3)

The same data are shown in Fig. 12 as a function of z;. The lines for
different L collapse into a single curve, provided ¢/v is chosen as

#/v=0.729(15) (4.4)

This value of ¢/v has been obtained by a linear fit to In r, (also shown in
Fig. 12) including ¢/v as a free parameter to achieve best scaling. In
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4.0
In ry
3.5 H
J
3.0 A
2.5
N
20 T T T T T T T
1.42 1.48 1.50 1.54 1.58

3/
Fig. 11. Ratio Inr;, with r, defined as the moment ratio (4.2), as a function of J,/J for

various L at T'=T,. The critical J,./J is the common point of intersection. The lines are linear
fits to the data.

4.0
AN
Lﬂ M B N
35 4
1
3.0 4

OoL 10

26 4 A L = 16

vV L = 24

4 O L = 40
2.0 T T T T ™ T i
-0.4 ~-0.2 0.0 0.2 0.4

Z4

Fig. 12. The same data as in Fig. 11 as a function of z, = (1 —J, /J,,) L?". The line represents
a linear fit including ¢/v as parameter. If FSS holds, all data should lie on the same universal
curve.
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Table l1. Resulting Parameters in Fits to the Moment Ratios (4.3)

Used ol JielJ 8o s, 5,
r 0.729(15) 1.5004(20) — — —
Yos F1s T2 0.729(9) 1.5002(10)  —00065(2)  —0.01(3) 0.07(1)

Fos Tis Fa 0.740(20) 1.4991(16) 0 0 0

contrast to r,, the ratios r, and r, exhibit a small but significant violation
of scaling. This violation can be described by an additional form factor
F(J) to the theoretical expression of r,:

re(z,, LY=F(d,, L) A, % (4.5)

For F we use the form
F(8, L)=[1+ (Ly/L)"1%* (4.6)

The data are not sufficiently accurate to determine L, and P independently
of 8. Therefore we choose P=2 and L,=60. The values of é,, ¢/v, J,/J,
and the constants A,, B, are free parameters in a fit to the data of Inr,.
The 9, turn out to be small (see Table II); in particular, , is compatible
with zero. ¢/v and J,./J agree within errors with (4.3) and (4.4). Omitting
the form factor at all (6, =0) has no consequences for the values of ¢/v and
J,./J, but the y?/DOF doubles. Other moments different from (4.3) have
less statistical significance. Since we need no corrections for the data of r,
we take the result of (4.3) and (4.4) as our final values quoted in Table III.
We estimate B, from the L dependence of the following moments at

T=T,:
w3 ()

Table lll. Comparison of Values for the Critical Parameters of the Present
Work with Values Given in the Literature?

LT ¢ By B,
Present 1.5004(20) 0.461(15) 0.237(5) 0.75(2)
Landau and Binder 1.52(2) 0.59(4) 0.18(2) 0.78(2)
Mean field (£°) 5/4 1/2 1/2 1
e-Expansion linear — 0.41 0.250 0.833
e-Expansion quadratic — 0.68 0.245 0.816

“We use §=10.330 and v=0.633 from ref. 24 to convert the merasured values into the values
given here.
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In the scaling ansatz for M, we allow a possible violation of scaling by a
multiplicative formfactor as in (4.5):

Mnk(BZpa 2y, L) = LkAr]/nﬂ/vF(anka L) Mnk(zl) (48)

The first factor on the r.h.s. of (4.8) reflects the anomalous dimension of
M ., which depends on f, via

1
A’1=’h—’ln=;(5*ﬁ1) (4.9)

For F(a, L) we take the parametrization (4.6) again. The last factor in (4.8)
contains the scale-invariant dependence on z,. Even with known f/v our
accuracy does not allow us to extract 4y from (4.8) without an assumption
on the scaling violation parameter a,,. If we consider cross ratios like

Mm,k-{—Kan,k—K
My ksx Moy ik

which depend at a fixed z, only on the ratios of formfactors like F(a,x . )/
F(a, -, L), we find that those ratios are independent of K, K’ (see Table IV).
Therefore we assume that «,, does not depend on k, which is compatible
with the data at least. With this assumption (4.8) reads now

Mnk(02p> 21 L) = (F(an’ L)L‘nﬁ/v) Lkanﬂk(zl) (410)

The first factor on the r.h.s. of (4.10) depends on » only and allows a
determination of «, if f/v is known. The L dependence of moments with
different £ determines A#. If we restrict the range of z, to |z,| < 0.4, a linear
dependence on z; turned out to be sufficient for the scaling function In M.
In a fit to the n=1 moments with k=0, | and f/v=0.512 we obtain

o, =0.008(6),  An=0.147(6) (4.11)

Table V. Values of Ratios of M,,,(©,) Moments at z=z,=0, Which Are
L Independent If the Assumption (4.10) about the Formfactor Is Correct

L MIOMII/MOIMZO MIIMOO/MOIMIO MOOMZO/MfO Lﬁ/leO
10 1.32(4) 0.80(3) 0.60(3) 1.25(1)
16 1.31(5) 0.84(3) 0.64(3) 1.25(1)
24 1.28(6) 0.82(5) 0.64(4) 1.23(1)

40 1.29(5) 0.81(4) 0.63(3) 1.24(1)
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and similarly for the » =2 moments with k=0, 1,2
o, =0.065(2), Ay =0.147(2) (4.12)

In Fig. 13 and 14 we show the data for M, L""/F(a,, L) and the fit for
M, (z,) as a function of z, for various L. The fit shows that the L
dependence is adequately described by the parametrization (4.10). o, #0
signalizes a small violation of scaling in the moments M,,, whereas the L
dependence of M, is in accordance with FSS. Absence of scaling violations
in M,, can be seen directly by LP*M,, given in the last column of
Table IV. The values (4.11) and especially (4.12) vary slightly with the
values L, and P chosen in the parametrization (4.6) of the form factor. We
can estimate a systematic error of Any by varying L, and P inside
reasonable margins, obtaining our final value for 4x:

An=0.147(8) (4.13)
An can be converted into a value for 7 using (4.9):

p1=0237(5) (4.14)

0.0

-
-

-0.4 -0.2 0.0 0.2 0.4

Fig. 13. Plot of In M, ,(z,) defined in (4.10) at T= T, as a function of z, for various L and
k=0,1,2. The lines are linear fits to the data including 4#n and the formfactor as free
parameters as described in the text.
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1.2

<l

0.8

0.6

0.4 L

3 T T T T T T T

-0.4 -0.2 0.0 0.2 0.4

Fig. 14. Plots of M(z,) and M, (z,) at T=T, as a function of z, for various L. The fit
using a linear z; dependence represented by the lines includes 47 as a free parameter (the form
factor is set to 1). '

From Table III we see that (4.14) agrees with the determination of ref. 3
inside 2 standard deviations.

There are two reasons which explain the gain in accuracy of J,., ¢/v,
and An by similar or less computational effort in comparison with ref. 3.
First we use improved observables which are more sensitive to scaling and
second the L dependence within FSS occurs not only in scaling factors like
L~ but also in the argument z,. The latter property is lost at the
ordinary transition, where J, ceases to be a relevant variable. In order to
determine 7 we have to study the moments as a function of L and 7. We
expect for y defined as

M, (0,,) ¥ 10,7

7= = (4.15)
My(0,,) A {s0,,
the following scaling law:
T(A-#
yzll——T—c 7(z) {4.16)
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o
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>0
— o
[T
NSt
<o

0.40 + T T T T T T
-0.20 -0.15 -0.10 -0.05 0.00
1-T/T,

Fig. 15. Plot of § defined in (4.16) as a function of 1~ T/T, at J, =0.5J for various L. The
fit with a constant 7 includes f{— § as a free parameter.

Our sample of data does not allow us to detect more than a constant
behavior of the scaling function 7. In Fig. 15 we show 3|1 — T/T.|fi"Tas a
function of 1—7/T, in the ordered phase at J,=0.5J. The data are
compatible with a constant 7, which has been determined together with
p$— B by a fit. This gives

9 —p=0421(22) (4.17)

Since y approaches the ratio of the order parameters m,/m for L — oo (see
Appendix), the constant value 7 can be taken as an estimate of the
amplitude ratio

B,

B J1=0.57

=0.77(5) (4.18)

Both critical index (4.17) and the amplitude ratio (4.18) agree with the
result of ref. 3.

5. CONCLUDING REMARKS

Our method employs clusters with nontrivial topological properties to
extract critical parameters, assuming that moments have a scaling dimen-
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sion independent of the loop number. The method has been tested success-
fully in models with periodic boundary conditions. In particular, the value
for the critical temperature in the d =3 Ising model has an accuracy com-
parable to the series expansion of ref. 24 (see Table I). It agrees within 2
standard deviations with the more accurate values from Monte Carlo
renormalization group methods®® or the histogram method.®” Our new
results refer to the critical parameters related to the d=3 Ising model
embedded in film geometry. Table III gives the comparison of our values
with the results of ref. 3. The critical coupling (J;./J) and the magnetic
index f¢ agree, whereas we encounter a disagreement of 2-3 standard
deviations for ¢/v and 7. Both methods are difficult to compare, since we
work exclusively at T=T, using FSS, and in ref. 3 the 7 dependence of
the infinite lattice is employed. The lattice sizes are similar (L <40) in
either case, whereas the type of possible scaling violations differs. We use
multiplicative form factors, which cannot be represented by a shift of the
critical temperature made in ref. 3. An answer probably requires a study of
substantially larger lattice sizes.

Our results can be compared with the e-expansion'!) (see Table III).
For f¢ or BT the e-expansion shows some kind of convergence and we find
good agreement. Since the ¢-expansion, the disagreement with our value
should not be taken too seriously.

Our method uses FSS at the bulk critical temperature. Therefore
determination of the amplitudes is impossible. Moments as functions
of T have to be studied. In the ordered phase the problem is aggravated
by the necessarity to subtract the corresponding combinations of order
parameters (see Appendix). We hope to return to these questions in a
separate publication. ?®

APPENDIX. SUSCEPTIBILITIES AND MOMENTS

To derive the relation between moments and susceptibilities y, we start
with the two-point function

g(x, y)=<o,.0,) (A1)

Evaluating the r.h.s. in the SW algorithm, we have

o, ) = {z 6.0, 4,(x) AAy)} (A2)

¢ ¢’
where
1 X€ec
0 otherwise

4.%) ={ (A3)
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Since spins in different clusters are independent, only the terms with ¢ = ¢’
survive:

g%, v) = {z 4.(x) Ac(y)} (Ad)

The various susceptibilities in the disordered phase are sums over x, y in
the bulk and/or in the surface. The bulk susceptibility is given by

1 1
1= T 806 9=5 T 52} = VMl (A3)

c

The surface susceptibility y;; and the mixed susceptibility y, are given by

1 1
X11=2X’yZEAg(X, y)=z{zc‘, tf}=AM22(1) (A6)
and
1 1
P ”zz{?"% P “

The cluster moments are averages over positive number in contrast to
averages over 0,0, which have both signs. As a result the variance of
VM, is much smaller than the variance of (1/V)(}, ¢,)°. For example,
in the limit 7 — oo we find 4%((¥ 0,)?/V) =2, whereas 4*(3, s2/V)~J/T.
In the ordered phase the unsubtracted susceptibilities (A5)-(A7) diverge
with L — oo with a constant M,,,. From this divergent part the order
parameters can be estimated as

lim Mk,1=(m)k-l(m1)l (A8)
L x

For a dimensionless SW distribution we see that m determined by

5 5.\? s\?

= li =)y >0, = Al
=i 2 (5) = o) )
has the same dimension as the percolation order parameter m,,.
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